

Serelaxin

The recombinant form of Human Relaxin-2 for the treatment of patients with acute heart failure

Ricardo Rocha, MD

Basel, Switzerland

Patients have a poor prognosis following heart failure hospitalization

Analysis of HF data from the Atherosclerosis Risk in Communities (ARIC) population-based study from four communities in the USA (1987–2002)

The pathophysiology of heart failure results in an increasingly downward spiral

- Acute decompensated HF is associated with frequent hospitalizations¹
 - after initial stabilization, there are high rates of mortality and rehospitalizations²
 - with each hospitalization, there is likely myocardial and renal damage that contributes to progressive LV or renal dysfunction, leading to an inevitable downward spiral³

 current therapies only treat symptoms and do not target the underlying mechanisms leading to cardiac and renal injury

1. Alla et al. Heart Fail Rev 2007;12:91-5; 2. Cleland et al. Eur Heart J 2003;24:442-636;

3. Gheorghiade et al. Am J Cardiol 2005;96:11G-17G

The pathophysiology of acute heart failure remains poorly understood

The exact mechanisms and the relative contribution of each is uncertain and is likely to vary between patients

Facing the challenges of AHF

A complex syndrome with three main pathophysiological components

AHF=acute heart failure; Ang II=angiotensin II; BP=blood pressure; GFR=glomerular filtration rate; MMP-2=matrix metalloproteinase-2; NSAIDS=non-steroidal anti-inflammatory drugs; TIMP-1=tissue inhibitors of matrix metalloproteinases-1

- 1. Cotter et al. Eur J Heart Fail 2008;10:165–9; 2. Hunt et al. J Am Coll Cardiol 2009;53:e1–e90;
- 3. Cotter et al. Am Heart J. 2008;155:9–18; 4. Bott-Flügel et al. Eur J Heart Fail 2008;10:129–32;
- 5. Feng & Wang. J Geriatr Cardiol 2008;5:1-6; 6. Tsutsui et al. Am J Physiol Heart Circ Physiol 2011;301:H2181-90;
- 7. Oikonomou et al. Hellenic J Cardiol 2011;52:30-40; 8. Biolo et al. Circ Heart Fail 2010;3:44-50

Acute heart failure syndrome episodes are associated with transient increases in NT-proBNP and troponin I, a marker of cell injury/death¹

- Troponin, a marker of myocyte injury and/or death, is known to be elevated in patients with HF without evidence of acute myocardial infarction²
- Episodes of AHFS are associated with non-ischemic processes known to cause myocyte death, including mechanical strain and oxidative stress³
- These data suggest that episodes of acute HF decompensation may be associated with cardiac myocyte injury and/or death

AHFS=acute heart failure syndrome; NT-pro-BNP=N-terminal pro-B-type natriuretic peptide

- 1. Biolo et al. Circ Heart Fail 2010;3:44–50; 2 Missov et al. Circulation 1997;96:2953–58;
- 3. Cheng et al. J Clin Invest 1995;96:2247-59

Cell death and injury in heart failure: multiple mechanisms and evolving concepts

Mechanical stress

Oxidative stress

Cell fate decision

Mocrosis

Apoptosis

(Programmed cell death e.g. development)

- Mitochondrial or intracellular signal cascade
- Activation of caspases
- DNA fragmentation
- No inflammation

Necrosis

(Accidental cell death e.g. ischemia)

- Energy exhaustion
- Excessive free radicals
- Membrane disintegration
- Cell swelling and spillage
- Pro-inflammatory

Necroptosis (Programmed necrosis)

- Alternative mode for cell to die under chronic stress
- Activated in presence of innate immune or mitochondrial stress
- Promoted by oxidative stress
- RIPK1 / RIPK3 complex key to execution

DNA=deoxyribonucleic acid; RIPK=receptorinteracting serine/threonine-protein kinase

Liu. Can J Cardiol 1999;15:8–10B; Li et al. Circ Res 2009;104:896–904; Li et al. Hypertension 2010;56:1109–17; Li et al. Cell 2012;150:339–50; Vandenabeele et al. Nat Review Molec Cell Biol 2010;11:700–14

Episodes of acute heart failure are associated with increased oxidative stress and collagen synthesis

0,98

12,6

*p<0.01; **p<0.0001 vs acute phase; *Post-acute HF measurements taken ~2 weeks after admission

- Myocardial remodeling involves rebuilding of the myocardial extracellular matrix, which is predominantly composed of collagen fibers
- Free radical generation has also been linked with myocardial remodeling
- These data from a study in 43 patients with acute HF demonstrate increased markers of collagen type I synthesis and oxidative stress, and reduced collagen type I degradation and total antioxidant status during the acute HF phase compared with ~2 weeks after admission

CITP=carboxy-terminal telopeptide of collagen type I; 8-iso-PGF₂₀=8-iso-prostaglandin F₂₀; PIP=procollagen type I carboxy-terminal peptide Kunishige et al. Circ J 2007;71:1893-7

Large randomized controlled trials in acute heart failure have failed to demonstrate outcome benefits

Trial name	Patient population	Intervention	Primary endpoint	Significant effect?
OPTIME- CHF ¹	951 patients admitted with exacerbation of systolic HF	i.v. milrinone vs pbo for 48 hours	Length of hospitalization for CV causes	×
VERITAS ²	1,448 patients hospitalized with AHF	i.v. tezosentan vs pbo for 24–72 hours	Change in dyspnea, incidence of death and worsening HF at 7 days	×
SURVIVE ³	1,327 patients hospitalized with AHF	i.v. levosimendan vs dobutamine	All-cause mortality at 180 days	×
EVEREST ⁴	4,133 patients hospitalized with AHF		All-cause mortality and CV death or hospitalization for HF	×
ASCEND-HF ⁵	7,141 patients hospitalized for AHF	i.v. nesiritide vs pbo for 24 hours–7 days	Change in dyspnea and 30-day all-cause mortality or HF hospitalization	×
PROTECT ⁶	2,033 patients hospitalized for AHF	i.v. rolofylline vs pbo for up to 3 days	Composite of survival, HF status and renal function	*

pbo=placebo

- 1. Cuffe et al. JAMA 2002;287:1541–7; 2. McMurray et al. JAMA 2007;298:2009–19;
- 3. Mebazaa et al. JAMA 2007;297:1883–91; 4. Konstam et al. JAMA 2007;297:1319–31;
- 5. O'Connor et al. N Engl J Med 2011;365:32-43; 6. Massie et al. N Engl J Med 2010;363:1419-28

Serelaxin
Mechanism of action and clinical data

Serelaxin is a recombinant form of the human hormone relaxin-2 that acts directly on CV tissues

Structure of native and manufactured human relaxin-2

Relaxin acts directly on CV tissues

- Naturally occurring peptide hormone, discovered in 1929
- Human relaxin-2 is one of seven peptides in the relaxin family of hormones
- Structure of human relaxin-2:
 53 amino acids (2 chains connected by 2 disulphide bonds)
- Relaxin-2 mediates its effects
 via specific G-protein-coupled receptors:
 RXFP1 (LGR7) and RXFP2 (LGR8)
- Cardiovascular tissues are equipped with relaxin receptors that are activated by circulating or regionally generated relaxin -2 to mediate diverse signaling pathways

Serelaxin triggers multiple pathways following binding to its receptor

NOS=nitric oxide synthase; ET_BR=endothelin type B receptor; MMP=matrix metalloproteinase; VEGF=vascular endothelial growth factor Adapted from Du et al. Nat Rev Cardiol 2009;7:48–58

Relaxin mediates maternal hemodynamic improvements during pregnancy

PARAMETER	PREGNANCY	
Systemic vascular resistance (dyn.s.cm²)	↓	
Cardiac output (L/min)	☆	
Global arterial compliance (mL/mm Hg)	☆	
Renal vascular resistance (dyn.s.cm²)	↓	
Renal blood flow (mL/min/1.73m²)	<u></u>	
Creatinine clearance (mL/min/1.73m²)	1	

- Onset of hemodynamic changes coincident with relaxin elevation during 1st trimester of pregnancy; similar but smaller changes observed during the luteal phase of menstrual cycle
- The beneficial effects of relaxin see in pregnancy may be beneficial in acute heart failure

Relaxin is expressed in myocardial tissues and levels are elevated in patients with heart failure

- Relaxin is constitutively expressed in human myocardial tissues
- Expression of relaxin is elevated in patients with CHF compared with individuals with no evidence of structural cardiovascular disease

CHF=congestive heart failure; ELISA=enzyme-linked immunosorbent assay; GAPDH=glyceraldehyde-3-phosphate dehydrogenase; mRNA= messenger ribnucleic acid; RT-PCR=reverse transcriptase polymerase chain reaction; vs=versus Dschietzig et al. FASEB J 2001;15:2187–95

Serelaxin dilates isolated human small resistance arteries *in vitro*

- Resistance vessels from gluteal biopsies were preconstricted with norepinephrine (10⁻⁵ mol/L)
- Serelaxin was as potent as prostacyclin (PGI₂) in causing vessel relaxation

There is an inverse correlation between plasma endothelin-1 and relaxin in patients with severe heart failure

Correlation between left ventricular plasma relaxin and left ventricular plasma ET-1 in patients with severe CHF

 Among patients with severe CHF, individuals with the highest plasma levels of relaxin had the lowest circulating levels of ET-1

Serelaxin demonstrated favorable hemodynamic effects in a pilot study in patients with chronic heart failure

- Hemodynamic effects of serelaxin during a continuous 24-hour, dose escalating infusion (colored bars) and during the 24-hour post-infusion (white bars)
- Hemodynamic measurements, including cardiac Index (by thermodilution method), systemic vascular resistance and pulmonary capillary wedge pressure, were serially performed using Swan–Ganz and arterial catheters

Serelaxin increases GFR and renal plasma flow and reduces renal vascular resistance in rats compared with time control

Danielson et al. J Clin Invest 1999;103:527-33

Serelaxin increases renal plasma flow in healthy volunteers

Hemodynamic measurements before and after 4 h intravenous infusion with serelaxin in healthy human volunteers

Parameter	Baseline	Serelaxin
RPF (mL/min per 1.73m²)	983±133	1403±165*
GFR (mL/min per 1.73m ²)	117.7±9.7	115.6±7.8
MAP (mmHg)	114.7±1.7	117.0±3.0
PR (beats per min)	68±1.8	67±1.9

No significant difference in RPF response between male and female volunteers.

Data are means ± SEM

 Administration of serelaxin increased RPF in male and female healthy volunteers without significant effects on GFR. Other effects included significant natriuresis.

MAP=mean arterial pressure; PR=pulse rate; RPF=renal plasma flow; SEM=standard error of the mean Smith et al. J Am Soc Nephrol 2006;17:3192–7

Serelaxin reduces markers of myocardial damage in an in vivo porcine model of ischemia/reperfusion

- Serelaxin (1.25, 2.5 and 5.0 μg/kg body weight) was administered following a 30-minute ischemia
- Serelaxin caused a dose-related reduction in key markers of myocardial damage (serum myoglobin, CK-MB, troponin T)
- The greatest reductions were observed with the highest two doses of serelaxin

Serelaxin reduces inflammatory leukocyte recruitment and oxygen free radical-mediated cardiomyocyte injury in vivo

- In an in vivo porcine model of myocardial ischemia/reperfusion, three increasing doses of serelaxin (1.25, 2.5 and 5.0 μg/kg body weight) were administered following 30 minutes of ischemia
- Serelaxin caused a dose-dependent reduction in inflammatory leukocyte recruitment (measured by myeloperoxidase concentration) and oxygen free radical-mediated cardiomyocyte injury (measured by malondialdehyde concentration and tissue calcium overload)

Serelaxin reduces myocardial apoptosis in an *in vivo* porcine model of ischemia/reperfusion

Photomicrographs of TUNEL -positive cardiomyocytes

Brown nuclei indicate TUNEL-positive nuclei (i.e. apoptotic cells)

- Three increasing doses of serelaxin (1.25, 2.5 and 5.0 µg/kg body weight)
 were administered following a 30-minute ischemia
- Serelaxin caused a dose-related reduction of key markers of cardiomyocyte apoptosis (caspase 3, TUNEL assay)

Serelaxin modulates collagen deposition in vitro and fibrosis in vivo

Collagen content of fibroblasts, untreated/treated with serelaxin (100 ng/mL) alone or with TGF-β (2 ng/mL), for 72 h of culture. Results are mean data from 3–4 separate experiments

*p<0.05, **p<0.01 vs untreated cells †p<0.05 vs TGF-β--treated cells

Collagen content/dry weight ventricular tissue was determined from 12-month-old relaxin wild-type (RLX+/+) mice (n=8), relaxin knockout (RLX-/-) mice treated with vehicle alone (n=4), and RLX-/- mice treated with 500 µg/kg/day serelaxin (n=4) for 14 days

*p<0.05 vs RLX+/+ †p<0.05 vs RLX-/- mice treated with vehicle alone

Serelaxin has potential multi-mechanistic effects which may address the pathophysiology of AHF

